- separable point
- мат.сепарабельная точка
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Separable space — In mathematics a topological space is called separable if it contains a countable dense subset; that is, there exists a sequence { x n } {n=1}^{infty} of elements of the space such that every nonempty open subset of the space contains at least… … Wikipedia
séparable — (sé pa ra bl ) adj. Qui peut se séparer, qui peut être séparé. Il n y a pas de corps dont les parties ne soient séparables. • L entendement, de soi, n est point attaché à un organe corporel, et il est, par sa nature, séparable du corps, BOSSUET … Dictionnaire de la Langue Française d'Émile Littré
Espace Séparable — En mathématiques, et plus précisément en topologie, un espace séparable est un espace topologique contenant un sous ensemble dénombrable et dense, c est à dire si l on peut trouver un ensemble dénombrable de points dont l adhérence est égale à l… … Wikipédia en Français
Espace separable — Espace séparable En mathématiques, et plus précisément en topologie, un espace séparable est un espace topologique contenant un sous ensemble dénombrable et dense, c est à dire si l on peut trouver un ensemble dénombrable de points dont l… … Wikipédia en Français
Particular point topology — In mathematics, the particular point topology (or included point topology) is a topology where sets are considered open if they are empty or contain a particular, arbitrarily chosen, point of the topological space. Formally, let X be any set and… … Wikipedia
Espace séparable — Ne pas confondre avec la structure d espace séparé. En mathématiques, et plus précisément en topologie, un espace séparable est un espace topologique contenant un sous ensemble fini ou dénombrable et dense, c est à dire contenant un… … Wikipédia en Français
Brouwer fixed point theorem — In mathematics, the Brouwer fixed point theorem is an important fixed point theorem that applies to finite dimensional spaces and which forms the basis for several general fixed point theorems. It is named after Dutch mathematician L. E. J.… … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
Abelian von Neumann algebra — In functional analysis, an Abelian von Neumann algebra is a von Neumann algebra of operators on a Hilbert space in which all elements commute. The prototypical example of an abelian von Neumann algebra is the algebra L^infty(X,mu) for μ a σ… … Wikipedia
Continuous game — A continuous game is a mathematical generalization, used in game theory. It extends the notion of a discrete game, where the players choose from a finite set of pure strategies. The continuous game concepts allows games to include more general… … Wikipedia
Glossary of topology — This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also… … Wikipedia